Cities Experiment

In the late 1980's, Harold Gans, then a Senior Cryptologic Mathematician with the National Security Agency, US Department of Defense, was told about the Great Rabbis Experiment. Being skeptical, he requested that Witztum and Rips provide him with the Book of Genesis on a computer disk so that he could duplicate the experiment. A few months later the data was provided. Gans did not immediately rerun the experiment; he reasoned that the data would never have been provided if the experiment were fraudulent. However, in 1990 Eric Coopersmith, then head of Aish HaTorah in North America, requested that he attempt to duplicate the Great Rabbis Experiment. Gans did so, using his own programs and following the specifications of the experiment in a preprint of the WRR paper. He obtained the same results as did Witztum and Rips.

He then conceived of a new experiment: to use the same names and appellations as in WRR's list 1 and list 2 combined, but pair them with the names of the cities of birth and death, as opposed to the dates of birth and death as in WRR. This new experiment became known as the cities experiment. He asked Zvi Inbal, a new acquaintance and a lecturer for Arachim in Israel to provide the list of cities for the new experiment. Inbal obliged, providing Gans with the list, along with an outline of the methodology used to construct the list. The database for the list of cities was the same encyclopedia used by WRR, in addition to the Encyclopedia Hebraica. The text of Genesis, the mathematical formula for proximity, and the method of calculating statistical significance used were precisely the same as in WRR. Gans completed the cities experiment in 1990 and documented his results in a preprint entitled Coincidence of Equidistant Letter Sequence Pairs in the Book of Genesis. The results were even more significant than that obtained by WRR: 6/1,000,000, or about 1/166,000. The paper was submitted for publication in Statistical Science but was rejected because it was not considered of interest to the broad audience of Statistical Science